Cash Award Question of 01.09.2023

In the picture, $A D, B E \& C F$ are the altitudes of $\triangle A B C$ and O is its Orthocentre. $L, M \& N$ are the midpoints of $A B, A C \& A O$ respectively. $P, Q \& R$ are the midpoints of LF, ME \& ND respectively. Prove: APRQ is concyclic.

Question framed by
DR. M. RAJA CLIMAX
Founder Chairman,

Author's Solution

Before going to the solution, let us see an important theorem, which will be later used in the solution. (This theorem was already proved vide a problem given in one of the previous month's contest)

CONCURRENT CHORDS THEOREM:

If three or more chords are concurrent at a point inside or outside their circle, then the midpoints of those chords and the said point of concurrency are concyclic.

Given: (In the picture)
$A B, C D \& E F$ are chords concurrent at O. [in this case ' O ' is outside the circle]
$L, M \& N$ are midpoints of $A B, C D \& E F$ respectively.
To Prove: OLMN is concyclic

Construction : Let 'G' be the centre of the circle. Join GL, GM \& GN.

Proof:

$\mathrm{GL} \perp \mathbf{A B}, \mathbf{G M} \perp \mathbf{C D} \& G N \perp E F[\because \mathbf{L}, \mathbf{M} \& \mathbf{N}$ are midpoints of the chords and G is the circumcentre]
$\Rightarrow \angle O L G+\angle O N G=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore OLGN is concyclic
$\Rightarrow \angle O M G+\angle O N G=90^{\circ}+90^{\circ}=180^{\circ}$
\therefore OMGN is concyclic
In (1) \& (2), three points viz $0, G \& N$ are common
\therefore OLMGN are concyclic \qquad Proved

Corollary :

OG is the diameter of the concyclic circle of OLMGN

Solution:

To Prove: APRQ is concyclic

Construction :

Join DE, EF, FD, LD, DM, FM, LN \& MN.
Let LM \& AD intersect at K .

Proof:

$\triangle D E F$ is the orthic triangle of $\triangle A B C$.
\therefore DO,EO \& FO are the angle bisectors of its angles at D, E \& F.

Let $\angle \boldsymbol{B A D}=\boldsymbol{x} \& \angle E A D=y$
AFDC is concylic ($\because \angle A F C=\angle A D C=90^{\circ}$)
$\Rightarrow \angle F A D=\angle F C D=x$
Similarly, BFEC is concyclic

$\Rightarrow \angle F E B=\angle F C B=x$
$\Rightarrow \angle F E D=2 x$
$L \& M$ are midpoints of $A B \& A C$
$\therefore L M \| B C$
And LK is the perpendicular bisector of AD.
$\therefore \angle B L D=\angle L A D+\angle L D A=2 x=\angle F E D$
$\Rightarrow L F D E$ is concyclic
N is midpoint of AO (Given)
$\therefore \mathrm{LN}\|\mathrm{BO}, \mathrm{MN}\| \operatorname{CO} \& \mathrm{BC} \| L M$
$\therefore \triangle L N M \sim \triangle B O C$

$$
\begin{equation*}
\Rightarrow \angle L M N=\angle B C O=x=\angle L D N \tag{2}
\end{equation*}
$$

$\Rightarrow L D M N$ is concyclic

Solution given by DR. M. RAJA CLIMAX Founder Chairman, CEOA Group of Institutions Tamil Nadu

Similarly, $\angle E M D=\angle E F D=2 y$
$\Rightarrow F D E M$ is concyclic
(1) \& (3) \rightarrow LFDEM is concyclic
(4) (3 points common in both)
(4) \& (2) \rightarrow LFDEMN is concyclic
(5) (3 points common in both)
$(5) \rightarrow$
FL, DN \& EM are chords of the same circle concurrent at A (outside the circle)
\therefore Their midpoints $P, Q \& R$ and their point of concurrency A are concyclic [By concurrent Chords Theorem Proved above]
ie.. APRQ is concyclic.

