

In the picture, AD, BE & CF are the altitudes of \triangle ABC and O is its Orthocentre. L, M & N are the midpoints of AB,AC & AO respectively. P, Q & R are the midpoints of LF, ME & ND respectively. Prove: APRQ is concyclic.

Question framed by DR. M. RAJA CLIMAX Founder Chairman, CEOA Group of Institutions Tamil Nadu

Author's Solution

Before going to the solution, let us see an important theorem, which will be later used in the solution. (This theorem was already proved vide a problem given in one of the previous month's contest)

CONCURRENT CHORDS THEOREM:

If three or more chords are concurrent at a point inside or outside their circle, then the midpoints of those chords and the said point of concurrency are concyclic.

Given: (In the picture)

AB, CD & EF are chords concurrent at O. [in this case 'O' is outside the circle]

L, M & N are midpoints of AB, CD & EF respectively.

To Prove: OLMN is concyclic

Construction : Let 'G' be the centre of the circle. Join GL, GM & GN.

Proof:

GL \perp **AB**, **GM** \perp *CD* & *GN* \perp *EF* [\because **L**, **M** & **N** are midpoints of the chords and G is the circumcentre]

 $\Rightarrow \angle OLG + \angle ONG = 90^{\circ} + 90^{\circ} = 180^{\circ}$

: OLGN is concyclic ----- (1)

 $\Rightarrow \angle OMG + \angle ONG = 90^{\circ} + 90^{\circ} = 180^{\circ}$

∴ OMGN is concyclic -----(2)

In (1) & (2), three points viz O,G & N are common

: OLMGN are concyclic -----Proved

Corollary:

OG is the diameter of the concyclic circle of OLMGN

Solution:

To Prove : APRQ is concyclic

Construction :

Join DE, EF, FD, LD, DM, FM, LN & MN.

Let LM & AD intersect at K.

Proof:

 \triangle *DEF* is the orthic triangle of $\triangle ABC$.

.. DO,EO & FO are the angle bisectors of its

angles at D, E & F.

Let $\angle BAD = x \& \angle EAD = y$

AFDC is concylic (:: $\angle AFC = \angle ADC = 90^{\circ}$)

 $\Rightarrow \angle FAD = \angle FCD = x$

Similarly, BFEC is concyclic

 $\Rightarrow \angle FEB = \angle FCB = x$ $\Rightarrow \angle FED = 2x$ L & M are midpoints of AB & AC ∴ *LM* || *BC* And LK is the perpendicular bisector of AD. $\therefore \angle BLD = \angle LAD + \angle LDA = 2x = \angle FED$ \Rightarrow LFDE is concyclic -----(1) N is midpoint of AO (Given) ∴ LN|| *BO*, MN|| *CO* & BC || *LM* Solution given by $\therefore \Delta LNM \sim \Delta BOC$ **DR. M. RAJA CLIMAX** Founder Chairman, $\Rightarrow \angle LMN = \angle BCO = x = \angle LDN$ **CEOA Group of Institutions** Tamil Nadu \Rightarrow LDMN is concyclic ------(2) Similarly, $\angle EMD = \angle EFD = 2y$ \Rightarrow FDEM is concyclic ------ (3) (1) & (3) \rightarrow LFDEM is concyclic ------ (4) (3 points common in both) (4) & (2) \rightarrow LFDEMN is concyclic -----(5) (3 points common in both) **(5)** →

FL, DN & EM are chords of the same circle concurrent at A (outside the circle)

∴ Their midpoints P, Q & R and their point of concurrency A are concyclic [By concurrent Chords Theorem Proved above]

ie.. APRQ is concyclic.
